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Most organisms anticipate daily changes in their envi­
ronment, including light, temperature and food avail­
ability for optimal fitness1–5. Prominent daily behavioural 
and/or physiological rhythms have been observed in 
animals, plants, fungi and bacteria. These rhythms 
are referred to as circadian, stemming from the Latin 
‘circa diem’ or about a day, and are the result of an 
autonomous, intrinsic timekeeping system called the 
circadian clock6,7. The circadian clock is able to keep 
running even under constant environmental conditions 
with an approximately 24-h periodicity. In a process 
referred to as entrainment, the phase of the circadian 
clock, meaning its stage in the cycle relative to external 
time, is determined by environmental cues termed zeit­
gebers. The response of the circadian clock to zeitgebers 
depends both on the strength of the stimulus and on the 
circadian phase during which it is applied. Consequently, 
zeitgebers can advance or delay the circadian clock, 
thereby ensuring its synchrony with the solar day. In 
normal conditions, these principles form the basis of 
the adaptive advantage that circadian clocks convey to 
an organism by optimizing the timing of fundamental 
cellular and physiological processes and behaviours. Yet 
erroneous exposure to zeitgebers, which is common in 
contemporary society, can disrupt circadian homeostasis 
and have detrimental effects on human health8.

The circadian clock is genetically controlled, and 
mutations in so-​called ‘clock genes’ can change rhythmic 
behaviour in animals, including insects and humans, 
and in plants, fungi and bacteria9. In essence, the cir­
cadian clock constitutes an autoregulatory succession 
of expression, accumulation and degradation of clock 
gene products that forms an autonomous molecular 
oscillator. Delays built into discrete stages of this cycle 
are crucial to its timing, although it is still unclear how 
the overall 24-h periodicity is achieved. In animals, the 
molecular clock controls the expression of output genes 
throughout the body, thereby temporally controlling 
the activity and function of different cells and organs10. 
Normal circadian physiology is created by a hierarchical 
network of central and peripheral clocks. In both verte­
brates and invertebrates, a dedicated set of neurons con­
trols circadian behaviour and can convey time-​of-day 
information to ‘downstream’ clocks in peripheral tissues 
and organs.

In this review, we focus on the fruit fly Drosophila 
melanogaster and on mammals as representative and 
complementary model systems that have been key to 
advancing our understanding of the molecular and cel­
lular composition of circadian clocks. First, we discuss 
the organization of circadian clocks at the molecular 
level and how circadian rhythmicity is established and 

Circadian rhythmicity
A physiological or behavioural 
oscillation with a period of 
~24 h, which is sustained in 
constant conditions and 
entrainable by external cues 
such as light.

Molecular mechanisms and 
physiological importance of  
circadian rhythms
Alina Patke   , Michael W. Young* and Sofia Axelrod

Abstract | To accommodate daily recurring environmental changes, animals show cyclic 
variations in behaviour and physiology, which include prominent behavioural states such as 
sleep–wake cycles but also a host of less conspicuous oscillations in neurological, metabolic, 
endocrine, cardiovascular and immune functions. Circadian rhythmicity is created endogenously 
by genetically encoded molecular clocks, whose components cooperate to generate cyclic 
changes in their own abundance and activity, with a periodicity of about a day. Throughout the 
body , such molecular clocks convey temporal control to the function of organs and tissues by 
regulating pertinent downstream programmes. Synchrony between the different circadian 
oscillators and resonance with the solar day is largely enabled by a neural pacemaker, which  
is directly responsive to certain environmental cues and able to transmit internal time-​of-day 
representations to the entire body. In this Review , we discuss aspects of the circadian clock in 
Drosophila melanogaster and mammals, including the components of these molecular oscillators, 
the function and mechanisms of action of central and peripheral clocks, their synchronization 
and their relevance to human health.

Laboratory of Genetics,  
The Rockefeller University, 
New York, NY, USA.

*e-​mail:  
young@rockefeller.edu

https://doi.org/10.1038/ 
s41580-019-0179-2

REVIEWS

Nature Reviews | Molecular Cell Biology

http://orcid.org/0000-0003-1628-4282
mailto:young@rockefeller.edu
https://doi.org/10.1038/s41580-019-0179-2
https://doi.org/10.1038/s41580-019-0179-2


the period length is controlled. We then discuss how 
circadian activity contributes to the optimal function 
of tissues and organs, to organismal physiology and to 
disease aetiology.

The molecular circadian clock
At the heart of the molecular circadian clock in animals is 
a transcription–translation feedback loop (TTFL), which 
takes approximately 24 hours to complete. In this section, 
we describe the chief components of the molecular oscil­
lators in D. melanogaster and in mammals, and discuss 
how recent findings have improved our understanding of 
these molecular clocks.

The molecular clock in D. melanogaster
The first mutants displaying altered circadian behaviour 
were found in D. melanogaster11. A genetic screen for 
the timing of eclosion, which occurs predominantly in 
the morning in wild-​type flies, yielded an arrhythmic 
strain named period0 (per0) and two additional mutants 
named period short (perS) and period long (perL), which 
shortened or lengthened the period to 19 h and 28 h, 
respectively. Genetic tests suggested that all three muta­
tions are alleles of the gene period, whose molecular 
identity was subsequently determined12,13. In the follow­
ing years, screens for locomotor activity, which peaks at 
dusk and dawn, which were aided by the short generation 
time and powerful genetics of D. melanogaster, uncov­
ered a network of circadian ‘clock genes’14. Biochemical 
and genetic studies ultimately revealed a TTFL in 
which two transcriptional inhibitors, Period (PER) and 
Timeless (TIM)15, physically associate and translocate 
to the nucleus, where they repress the transcription of 
their own genes by suppressing a pair of transcription 
activators, Clock (CLK)16 and Cycle (CYC)17 (Fig. 1). CLK 
and CYC accumulate constitutively in the nucleus and 
form a heterodimer, which binds to E-​box-containing 
enhancers upstream of the promoters of per and tim. The 
levels of per and tim mRNAs peak at the end of the day, 
whereas their protein levels are highest in the second half 
of the night (Fig. 2).

As PER and TIM accumulate in the nucleus, 
they increasingly inhibit CLK–CYC function. Light-​
dependent TIM degradation occurs during the day 
through the activity of the photoreceptor protein 
Cryptochrome (CRY) and the E3 ubiquitin ligase Jetlag 
(JET), which also degrades CRY18–20 (Fig. 1). In the 
absence of TIM, PER is destabilized by Double-​time 
(DBT)21,22, which is the fly orthologue of mammalian 
casein kinases 1(CK1) δ and ε, and by the E3 ubiquitin 
ligase supernumerary limbs (SLIMB)23,24; the concomi­
tant loss of PER and TIM restarts the circadian cycle. 
The transcriptional targets of CLK–CYC include down­
stream clock output genes, whose cyclic expression con­
fers circadian rhythmicity to cell and tissue function25–33. 
A second TTFL controls the expression of the clk mRNA. 
CLK–CYC bind to E-​boxes in the enhancers of the genes 
encoding the transcription factors Vrille (VRI) and PAR 
domain protein 1ε (PDP1ε), which control clk transcrip­
tion34 (Fig. 1). VRI binds to VRI/PDP1ε-​binding boxes in 
the clk enhancer and represses clk transcription, whereas 
PDP1ε activates it later in the night, thus resulting in 

rhythmic clk mRNA expression. However, modulating 
the phase in which the clk mRNA is expressed does not 
affect behavioural rhythms35 and CLK protein does 
not oscillate, so the role of rhythmic clk mRNA expres­
sion remains unclear. Nevertheless, PDP1ε is essential 
for rhythmicity36, possibly by controlling the expression 
of the neuropeptide pigment-​dispersing factor (PDF), 
which is required for behavioural rhythms37.

Regulation of the molecular clock in D. melanogaster. 
What regulates the precise timing for the TTFL to ensure 
near 24-h rhythmicity? On the transcriptional level, 
the degree of feedback repression of the transcription 
of per and tim is a key regulator of the circadian clock. 
Overexpression of CLK–CYC, increasing their activity at 
per and tim E-​boxes38,39, or overexpression of per under 
its own promoter shorten the circadian period, whereas 
a reduction of per levels40 or disruption of clockwork 
orange (CWO), which has a dual role as a competitive 
inhibitor of CLK–CYC and as a suppressor of CLK target 
genes, lengthen the period41–43.

At the post-​transcriptional level, regulation of pro­
tein synthesis, stability and accumulation all contribute 
to the precise timing of the circadian clock by intro­
ducing crucial delays into the TTFL. The synthesis 
of the proteins CLK, CWO and TIM is inhibited by 
the microRNAs bantam44, let-7 (ref.45) and mir-276a 
(ref.46), respectively (Fig. 1), and overexpression of either 
microRNA causes period lengthening44,45 or arrhyth­
micity46. The stability of the tim mRNA depends on 
the activity of the deadenylase POP2 (ref.47), whereas 
Twenty-​four48 and its activator Ataxin 2 (refs49,50) facil­
itate the translation of the tim and per mRNAs by pro­
moting their binding by polyadenylate-​binding proteins 
type 1. The protein turnover of PER, TIM and CLK is 
regulated by different kinases and phosphatases. DBT 
phosphorylates PER21,22 and CLK51,52, both in the cyto­
plasm and in the nucleus (Fig. 1). Once PER is phospho­
rylated by the kinase NEMO53, it is phosphorylated by 
DBT, thereby enabling subsequent downstream PER 
phosphorylation events, which mark it for SLIMB-​
mediated proteasomal degradation23,24. Mutations in 
dbt that affect its kinase activity yield flies with short or 
long periods (dbtS and dbtL, respectively21) or arrhythmic 
flies (dbtAR)54.

As mentioned above, the PER–TIM heterodimeriza­
tion retards DBT-​dependent PER phosphorylation and 
degradation. Although DBT is expressed constitutively, 
rhythmic assembly of the PER–TIM–DBT complex, 
along with the DBT binding partner Bride of double-​
time (BDBT)55,56, creates rhythmicity of PER degradation. 
DBT is also required for CLK inactivation, probably by 
providing a scaffold for phosphorylation by an unknown 
kinase52 and subsequent PER-​mediated disengagement 
from DNA51,52. The stability of PER and TIM is also 
affected by two phosphatases: protein phosphatase 2A 
stabilizes PER by antagonizing its DBT-​mediated phos­
phorylation and subsequent degradation57, whereas pro­
tein phosphatase 1 stabilizes TIM58 (Fig. 1). TIM is also 
subject to sequential phosphorylation by Shaggy and 
CK2, which promote its accumulation in the nucleus, a 
process that also depends on importin-α59–62. Although 
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PER and TIM dissociate prior to nuclear entry63, PER 
requires TIM for nuclear translocation and is retained in 
the cytoplasm by DBT and by O-​GlcNAcylation64, which 
consequently reduces PER binding to CLK65.

The molecular clock in mammals
Although the central features and principles of the 
molecular clock are conserved from insects to mammals, 
some notable differences exist9. As in D. melanogaster,  
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the cell-​autonomous molecular circadian clock in mam­
mals consists of interlocking TTFLs (Fig. 3). In the main 
loop, the positive elements that drive the circadian 
cycle are heterodimers of the basic helix–loop–helix 
(bHLH)–Per-​Arnt-Sim (PAS) transcription factors 
BMAL1 (also known as ARNTL; orthologue of fly CYC) 
and CLOCK (orthologue of fly CLK). CLOCK–BMAL1 
activate the transcription of target genes that contain 
E/E′-​box elements in their promoter and/or enhancer 
regions. These genes include the negative elements that 
attenuate the main loop — members of the mammalian 
PER and CRY protein families. PER1, PER2 and PER3 
are orthologues of the D. melanogaster single PER pro­
tein, and CRY1 and CRY2 are structurally related to the 
fly CRY. Although different PER and CRY paralogues 
can to some extent compensate for loss of another para­
logue, their roles in the mammalian clock are not com­
pletely redundant. For example, circadian rhythmicity 
is only abolished upon inactivation of both CRY1 and 
CRY2, whereas their individual loss shortens or length­
ens the circadian period, respectively66. At a later stage of 
the cycle, complexes containing PER and CRY proteins 
inhibit the activity of CLOCK–BMAL1, effectively pre­
venting their own continued production. Once PER and 
CRY levels sufficiently drop, CLOCK–BMAL1-mediated 
transcription can resume, thus completing the cycle.

In addition to the PER and CRY genes, CLOCK–
BMAL1 target genes include the nuclear receptors REV-​
ERBα and REV-​ERBβ (REV-​ERBα/β), which together 

with retinoid-​related orphan receptor α (RORα), 
RORβ and RORγ (RORα/β/γ) form a second loop that 
ensures the rhythmic expression of BMAL1, analo­
gous to the regulation of fly CLK by VRI and PDP1ε 
(refs67,68). REV-​ERBα/β and RORα/β/γ compete for 
binding of REV-​ERB–ROR response elements in the 
promoter and enhancer regions of target genes, includ­
ing ARNTL, and inhibit or activate their transcription, 
respectively69 (Fig. 3). Another CLOCK–BMAL1 target 
gene, D-​box binding protein (DBP), and its related proline 
and acidic amino acid-​rich–basic leucine zipper (PARbZip) 
transcription factors TEF and HLF, compete with NFIL3 
to activate or inhibit, respectively, the expression of clock 
genes from D-​box-containing promoters70,71.

A notable difference between the D. melanogaster 
and mammalian clocks is the role of the CRY proteins. 
Whereas the fly CRY (dCRY) is not a component of the 
core TTFL but feeds into it through its light-​dependent 
control of TIM stability (Fig. 1), the mammalian CRY 
proteins have assumed the role of TIM and act as the 
main transcriptional repressor of CLOCK–BMAL1 
(Fig. 3). The primary function of the closest mammalian 
TIM homologue appears to be the protection of stalled 
replication forks72. However, as mammalian TIM can 
interact with mammalian CRY proteins and its absence 
alters the circadian period, TIM has a sustained, if not 
entirely conserved, role in regulating the mammalian 
circadian clock73,74.

A recent addition to our understanding of CLOCK–
BMAL1 regulation has been the identification of 
CHRONO (also known as circadian-​associated repressor 
of transcription), which, like the CRY proteins, inhibits 
CLOCK–BMAL1 on E-​boxes, but does so through a dif­
ferent epigenetic mechanism75–77. Remarkably, CHRONO 
is the gene rhythmically expressed in the greatest num­
ber of tissues in a diurnal primate, surpassing even the 
better-​known core clock components78. The biological 
function of another recently identified CLOCK–BMAL1 
repressor, PASD1, appears to be the dampening of molec­
ular clock oscillations. This is consistent with its nar­
row expression profile only in tissues that do not show 
circadian rhythmicity, such as the germline and onco­
genically transformed somatic tissues79. Notably, PASD1 
is broadly conserved in mammals except the murine 
lineage. Clearly, there is still much to be learned about 
the nature and function of the cell-​autonomous circadian 
oscillator, especially in non-​traditional model organisms, 
including humans.

Regulation of the mammalian molecular clock. 
Transcriptional regulation of mammalian clock genes 
lies at the very core of the cell-​autonomous circadian 
oscillator and is a highly regulated process. Genomic 
profiling studies have revealed a transcriptional cycle 
that proceeds from a poised state to activation, active 
transcription and repression80. Each of these states is 
distinguished by a unique combination of chromatin-​
bound clock proteins, recruitment and activation of 
RNA polymerase II and distinct sets of histone modifi­
cations. It is important to note that although this tran­
scriptional cycle can be seen globally in the liver, it does 
not necessarily predict the phase in which an individual 

TIM PER

Cytoplasm Nucleus

Phosphorylation

R
el

at
iv

e 
co

nc
en

tr
at

io
n

0 12 22

Day Night

Zeitgeber time (h)

CLK
clk mRNAPER, TIM

per, tim mRNAs

DBT

pp2a mRNA

CRY

CWO
VRI
PDP1εBDBT

Fig. 2 | The expression of several circadian clock genes oscillates over the day–night 
cycle. Shown are approximate relative concentrations of key circadian clock factors: 
mRNAs are denoted as dashed curves and proteins as solid curves. Top panel: 
phosphorylation of cytoplasmic Period (PER) and Timeless (TIM) increases over the course 
of the night promoting their nuclear accumulation, which is highest in the second half of 
the night. BDBT, Bride of Double-​time; CLK , Clock; CRY, Cryptochrome; CWO, Clockwork 
orange; CYC, Cycle; DBT, Double-​time; PDP1ε, PAR domain protein 1ε; pp2a, protein 
phosphatase 2A ; VRI, Vrille.

E/E′-box
The DNA element CACGT(T/G), 
which is bound by the basic 
helix–loop–helix transcription 
factors CLOCK–BMAL1.

D-​box
(DBP response element).  
A DNA element (TTATG(C/T)AA) 
bound by transcription 
regulators of the proline and 
acidic amino acid-​rich–basic 
leucine zipper family (DBP, TEF, 
HLF) and E4BP4 (also known 
as NFIL3).

Basic leucine zipper
(bZip). A protein domain 
common in many DNA-​binding 
proteins.

www.nature.com/nrm

R e v i e w s



target gene will be expressed81. Rather, the phase appears 
to be primarily defined by the rhythmic activity of inter­
genic enhancers bound by clock proteins82. Recent tech­
nical advances in the analysis of genome topology have 
enabled the unbiased assessment of enhancer–promoter 
interactions, and found rhythmic compaction in select 
subregions of topologically associating domains83. The cir­
cadian regulation of promoter–enhancer proximity is 
functionally important to the clock, as shown by period 
shortening upon deletion of an intronic enhancer region 
in the CRY1 gene84. Furthermore, the transcriptional 
repressive function of REV-​ERBα can be attributed at 

least in part to its suppression of functional promoter–
enhancer interactions83. Thus, circadian genome-​
topology dynamics have emerged as a new regulatory 
layer in the molecular clock cycle.

Following transcription, RNA N6-adenosine methyl­
ation regulates the translocation of mature PER2 and 
BMAL1 transcripts from the nucleus to the cytoplasm85. 
Once clock proteins are synthesized, there is extensive 
regulation at the level of post-​translational modifica­
tion and protein stability (Fig. 3). A general trend among 
findings so far is that the circadian period length in 
mammals is exquisitely sensitive to alterations in the 
phosphorylation state of the PER proteins and the sta­
bility of the CRY proteins. PER proteins are subjected to 
successive phosphorylation events of multiple residues by 
CK1δ and CK1ε and by CK2 (refs86–94), which controls 
their susceptibility to proteasomal degradation medi­
ated by the E3 ubiquitin ligase β-​TrCP (also known as 
F-​box/WD repeat-​containing protein 1A)95,96, although 
the outcomes of the phosphorylation events are complex. 
Whether phosphorylation promotes protein stability or 
degradation depends not only on the modified residue 
but also on subtle differences in the responsible kinase. 
For example, phosphorylation by an alternatively spliced 
variant of CK1δ has opposite effects on PER2 stability 
and on circadian period length compared with phospho­
rylation by the canonical CK1δ (ref.97). O-​GlcNAcylation 
of PER2 can also compete with its phosphorylation to 
further modulate clock cycling98. PER2 degradation 
is also promoted through its de-​acetylation by sir­
tuin 1 (SIRT1)99. Notably, the oncoprotein and E3 ubiq­
uitin ligase MDM2 can promote PER2 degradation 
regardless of its phosphorylation state100.

The stability of CRY1 and CRY2 can also be affected 
by phosphorylation101 (Fig. 3). Unlike the PER proteins, 
however, CRY phosphorylation by AMP-​activated pro­
tein kinase (AMPK) is not part of a complex multisite 
phosphorylation sequence. Phosphorylated CRY1 
and CRY2 become a target for the E3 ubiquitin ligases 
FBXL3 and FBXL21, and targeting of the CRY1–FBXL3 
complex to the proteasome is facilitated by JMJD5 
(refs102–107). The circadian period length closely tracks 
CRY protein abundance when manipulated genetically 
or pharmacologically, although additional features of the 
CRY proteins, such as the carboxy-​terminal tail, can also 
modulate it108–115. Surprisingly, CRY proteins can also act 
as cofactors in targeting other proteins such as the proto-​
oncogene MYC for FBXL3-mediated ubiquitylation and 
degradation116,117.

Other clock proteins are also regulated through post-​
translational modification and degradation. BMAL1 
acquires a wide variety of modifications throughout its 
life cycle (Fig. 3). Phosphorylation by CK2α promotes 
its nuclear accumulation, whereas phosphorylation of 
different residues by glycogen synthase kinase 3 (GSK3; 
orthologue of the fly protein Shaggy) leads to instabil­
ity118–120. BMAL1 turnover is further regulated through 
conjugation of SUMO by a yet to be specified SUMO E3 
ligase and through ubiquitylation, which can involve the 
E3 ligase UBE3A (refs121–123). Finally, the acetylation state 
of BMAL1 has been linked to its transcriptional activity, 
although different mechanisms have been proposed: 
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transcription–translation feedback loops. In the main loop, the transcription factors 
CLOCK–BMAL1 induce the expression of their own negative regulators, the Period (PER) 
and Cryptochrome (CRY) proteins (step 1). By inhibiting the transcriptional activity of 
CLOCK–BMAL1, PER and CRY repress their own expression. Once PER and CRY levels 
have sufficiently dropped, a new cycle of transcription by CLOCK–BMAL1 can begin. 
CLOCK–BMAL1 also induce the expression of the nuclear receptors REV-​ERBα and REV-​
ERBβ (REV-​ERBα/β) (step 2), which oppose retinoid-​related orphan receptor α, β and γ 
(RORα/β/γ)-mediated BMAL1 expression (step 3), and the expression of D-​box binding 
protein (DBP) (step 4), which activates transcription from D-​box-containing genes 
including RORα/β/γ (step 5). D-​box-dependent transcription is inhibited by NFIL3, itself a 
REV-​ERB and ROR target gene (step 6). All loops also control the expression of clock-​
controlled genes (CCG), which mediate circadian output. Selected factors that mediate 
post-​translational modifications and degradation of specific clock proteins are shown in 
matching colours. Downward arrows indicate the removal rather than addition of a post-​
translational modification by the respective factor. Targets of small-​molecule modulators 
being explored for the treatment of sleep, mood and metabolic disorders are marked 
with an asterisk. For clarity , the translocation of clock factors between the cytoplasm and 
nucleus, which is a key regulatory step, and additional regulatory DNA elements that 
contribute to the accurate phase of clock gene expression have been omitted from the 
diagram. For simplicity , BMAL1, REV-​ERBα and REV-​ERBβ are used in place of the official 
gene names ARNTL, NR1D1 and NR1D2, respectively. Ac, acetylation; AMPK , AMP-​
activated protein kinase; ARF-​BP1, also known as HUWE1; BMAL1, also known as ARNTL; 
CDK1, cyclin-​dependent kinase 1; CK1, casein kinase 1; CK2, casein kinase 2; E/E′, 
E/E′-box; G, addition of O-​linked β-​d-N-​acetylglucosamine; GSK3, glycogen synthase 
kinase 3; P, phosphorylation; PAM, also known as MYCBP2; PP1, protein phosphatase 1; 
RRE, REV-​ERB/ROR response element; SIRT1, sirtuin 1; SUMO, sumoylation; β-​TrCP, also 
known as F-​box/WD repeat-​containing protein 1A ; Ub, ubiquitylation.
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BMAL1 acetylation by CLOCK promotes its interaction 
with CRY1 and is reversed by SIRT1, whereas acetyl­
ation of the same residue by TIP60 enables productive 
transcription elongation124–126. REV-​ERBα is another 
reported GSK3 target, although in this case the modifi­
cation protects it from degradation mediated by the E3 
ligases ARF-​BP1 (also known as HUWE1) and PAM (also 
known as MYCBP2)127,128. REV-​ERBα degradation medi­
ated by another E3 ligase, SIAH2, affects the circadian 
period length, whereas its degradation by the E3 ubiquitin 
ligase FBXW7 following CDK1-mediated phosphoryla­
tion controls circadian amplitude, meaning the difference 
between the peak and trough values of the oscillation129,130.

The negative elements of the core molecular clock 
assemble into large multi-​protein complexes that contain 
all three PER proteins, both CRY proteins and CK1δ, 
into which CLOCK and BMAL1 are incorporated in the 
nucleus131. When purified from liver nuclear extracts, all 
of these proteins appear to be part of the same 1.9-MDa 
complex. However, other studies have suggested the 
existence of alternative clock-​repressive complexes in 
the nucleus on the basis of the differential ability of PER 
and CRY proteins to repress CLOCK–BMAL1-mediated 
transcription132–136. We recently observed that an altered  
form of CRY1 with an internal deletion of 24 residues 
owing to a splice site mutation, which predisposes  
to delayed sleep phase disorder, enhances CRY1 binding to  
CLOCK–BMAL1 but not to PER2 and acts as a stronger 
transcriptional inhibitor than wild-​type CRY1 (ref.114).

Clock functions throughout the body
The master (central) pacemaker is comprised of a set of 
neurons and glia in the brain, which are necessary for 
entrainment to external zeitgebers and transmit temporal 
information to downstream peripheral clocks, which are 
located in other brain areas or throughout the body. The 
degree to which the central pacemaker is required for 
circadian rhythmicity of different cells, tissues, physiolog­
ical functions and behaviours varies between species and 
tissues. To achieve synchrony between central pacemaker 
cells, they are coupled to each other through neuro­
transmitters and neuromodulators. Synchronization 
of central and peripheral clocks is coordinated by the 
nervous system, hormones and body temperature.

The central pacemaker in D. melanogaster
The expression of clock genes in a small number of neu­
rons is necessary and sufficient to maintain functional 
behavioural rhythms in constant darkness devoid of 
external zeitgebers137. In D. melanogaster, this neuronal 
pacemaker network consists of ~150 neurons subdivided 
into five bilateral clusters, which according to their loca­
tion in the fly brain have been named large ventral lat­
eral neurons, small ventral lateral neurons, dorsal lateral 
neurons, lateral posterior neurons and dorsal neurons. 
Not all clock neurons have the same function, and in fact 
there is a subdivision into neurons responsible for dif­
ferent aspects of daily locomotor rhythms. Furthermore, 
recent studies showed that a robust locomotor rhythm 
is an emergent property of a combination of different 
rhythms in different clusters of clock neurons, and that 
selectively activating or inactivating those clusters causes 

predictable changes in the activity patterns of flies138–140. 
Such differences in rhythmicity of clock neurons are a 
function of differential expression of clock genes25 and 
downstream factors, and of differential coupling to other 
clock cells through neuromodulators — notably PDF141 
— and through diurnal circuit remodelling of synaptic 
connections (reviewed in142,143). In fact, clock neurons 
and glia cells change their synaptic partners rhythmi­
cally across day and night, suggesting that the brain 
circuitry itself undergoes circadian plasticity144,145. Glia 
themselves have a well-​documented yet relatively under­
studied role in the central pacemaker (reviewed in146). 
Different clusters of clock neurons have been implicated 
in regulating different rhythmic behaviours, including 
eclosion, locomotion, feeding, mating, courtship and 
temperature preference (see below)147. The multitude 
of clock cell populations and additional genetic factors 
are believed to create a robust circadian rhythm, which 
allows animals to optimally anticipate cyclical changes 
in their environment yet is able to adapt to seasonal 
changes in day length148.

The central pacemaker in mammals
The circadian physiology of mammals is based on a hier­
archical network of central and peripheral oscillators.  
The master, central pacemaker is located in the supra­
chiasmatic nuclei (SCN) of the hypothalamus, as proved 
by the striking exchange of the behavioural circadian 
period between normal hamsters and a short-​period 
mutant following reciprocal SCN transplantations149. 
Further transplantation studies demonstrated that a dif­
fusible signal from the SCN is sufficient for controlling 
the circadian period of the recipient150, although we know 
now that a complex network of humoral and neuronal sig­
nals and of body temperature rhythms mediates circadian 
control downstream of the SCN (reviewed in151). In this 
way, time-​of-day information is transmitted to the entire 
body to affect daily cycles of physiology and behaviour.

The molecular makeup of the cell-​autonomous core 
circadian oscillator is conserved between cells in the 
SCN and elsewhere in the body, except for a potential 
subtle difference in the ability of NPAS2, a CLOCK 
homologue, to compensate for the loss of CLOCK152,153. 
What sets the SCN apart from the peripheral oscilla­
tors and allows it to maintain a stable circadian rhythm 
essentially indefinitely without dampening is the inter­
cellular coupling between its neurons. Anatomically and 
functionally, the SCN can be divided into a ‘core’ region 
and a ‘shell’ region, which differ in their neuropeptide 
profiles, efferent projections and ability to maintain inter­
cellular synchrony. Circadian activity across the SCN 
proceeds in a highly stereotypical fashion with progres­
sive differences in phase and amplitude reminiscent of 
a tidal wave. This striking pattern can be beautifully 
visualized through long-​term bioluminescence record­
ings from organotypic SCN slices of mice expressing a 
PER2–luciferase fusion protein and depends on electri­
cal coupling154. SCN neurons exhibit pronounced circa­
dian rhythms in membrane potential and spontaneous 
firing rate, which directly affect circadian behaviour as 
shown recently through optogenetic manipulation155. 
Several recent reviews (for example, ref.156) provide an 

Delayed sleep phase 
disorder
A circadian rhythm sleep 
disorder characterized by a 
delay in the major sleep 
episode relative to the desired 
sleep time.
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region such as the 
suprachiasmatic nuclei.
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excellent, comprehensive overview of our current mech­
anistic understanding of the SCN, so we will not discuss 
it in further detail here. One notable recent update to 
the canonical model of SCN function has been the con­
tribution of non-​neuronal cell types. Circadian rhythms 
in SCN-​resident astrocytes have been shown to be suf­
ficient, although not required, for modulating circadian 
behaviour and can even confer oscillations to clock-​less 
SCN neurons157–159. Thus, normal pacemaker function 
in the intact SCN results from interplay of the neuronal 
network with local non-​neuronal clocks.

Peripheral clocks in D. melanogaster
In D. melanogaster, most tested tissues show circadian 
rhythms in gene expression levels and peripheral oscil­
lators have important roles in development, metabolism 
and behaviour (Fig. 4). Depending on the tissue, between 
50 and 2,000 genes have been estimated to be rhythmi­
cally expressed in a diurnal manner25–33. Although oscil­
lation in some tissues, including in the prothoracic gland 
and in oenocytes, depends on input of neuropeptides 
from the central pacemaker160, other tissues including 
the Malpighian tubules, antennae and proboscis function 
independently of the central pacemaker and in direct 
response to environmental stimuli161–164.

Eclosion, which was the first behaviour to be tested 
in fly screens, is mediated by a clock in the prothoracic 
gland, which produces the moulting steroid hormone 
ecdysone. The clock regulates steroid synthesis and com­
municates time-​of-day information to the prothoracic 
gland through short neuropeptide F signalling from the 
small ventral lateral neurons160. Interestingly, removing 
the clock only from the prothoracic gland is lethal, pre­
sumably due to acute desynchronization of steroid sig­
nalling from developmental signals originating in other 
areas of the body165.

An increasingly important area of circadian research 
concerns the circadian regulation of metabolism166. Flies 
have an organ called the fat body, which performs the 
functions of the human liver and adipose tissue. A study 
analysing gene expression in the fat body reported over 
100 cycling transcripts, which are largely related to meta­
bolic function, immunity and reproduction33. The fat  
body clock is sufficient to drive cyclic expression of 
several clock target genes33, whereas others depend on 
input from the brain clock, specifically the neuropeptide  
F-​expressing dorsal lateral neurons cluster167. Malpighian 
tubules, which serve as the fly’s kidney, exhibit cell-​
autonomous and light-​entrainable clock function, likely 
regulating water homeostasis in a circadian fashion162,168.

Prothoracic gland
An endocrine gland in certain 
insects regulating moulting by 
secretion of steroid hormones 
such as ecdysone.

Oenocytes
Pheromone-​producing 
secretory cells found in most 
insects.

Malpighian tubules
An excretory and 
osmoregulatory system used 
by some invertebrates; 
Malpighian tubules are 
functionally similar to the 
mammalian kidney.

Proboscis
A flexible and tubular mouth 
part used by many insect 
species for feeding.

Short neuropeptide F
A signalling molecule released 
by subpopulations of neurons 
including some clock neurons; 
orthologue to mammalian 
neuropeptide Y.
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Fig. 4 | Peripheral clocks in Drosophila melanogaster. Circadian clocks control various physiological processes through 
rhythmic expression of molecules in different tissues, for example steroids during development165, time-​of-day memory 
associating with two different odours185, sex pheromones during mating183, P-​glycoprotein expression in the blood–brain 
barrier for xenobiotic transport186, sleep-​promoting factors175, fat body enzymes33 and redox enzymes291,292. During ageing 
or in disease, the amplitude of sleep, metabolic and redox rhythms can be reduced283,347,348, potentially contributing to 
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One of the most apparent outputs of the circadian 
clock is the sleep–wake cycle. Timing of sleep is deter­
mined by two factors: the need to sleep — also called 
sleep pressure — and the circadian clock169. Sleep tim­
ing and duration are highly sensitive to the internal 
and external state of the animal, which is controlled by 
the coordinated action of neuronal and glial circuits, 
including the central pacemaker, intracellular factors, 
neurotransmitters and neuromodulators, and can be 
influenced by the immune system and metabolism 
(reviewed in170). Clock-​less flies can have normal total 
amounts of sleep, despite it being randomly distributed 
across day and night171. Conversely, sleep mutant flies 
can exhibit normal rhythmicity despite overall reduced 
sleep172–174. Nevertheless, separating the two processes 
genetically can be complicated owing to some genes 
having roles in both processes, as a substantial pro­
portion of flies in some sleep mutant populations also 
appear to be arrhythmic172–174. For example, the sleep 
gene encoding Wide awake, whose disruption reduces 
the duration of daily sleep, is expressed in and affects  
clock neurons in a circadian manner, thereby showing 
the interconnectedness of mechanisms controlling sleep 
and circadian rhythms175. Reciprocally, various manipu­
lations of circadian genes and neurons have an effect on 
sleep176. Notably, mutants of the clock gene cyc display 
reduced rebound sleep after sleep deprivation177,178. Like 
mammals, hungry D. melanogaster sleep poorly; this 
starvation-​induced sleep deprivation is mediated by 
clk and cyc, pointing towards regulatory integration of 
two homeostatic behaviours — feeding and sleep — by 
the circadian clock179. The DN1 subset of clock neu­
rons regulates both wake and sleep at different times of 
the day180,181, and recent work showed that these neu­
rons also integrate temperature to regulate the timing 
of sleep182.

The circadian clock also regulates mating by influ­
encing the production of sex pheromones in secretory 
cells called oenocytes. The oenocyte clock functions 
cell-​autonomously; however, the neuropeptide PDF, 
which is released by master clock neurons in the central 
brain, is required to set the correct phase of the oeno­
cyte clock and thereby of sex hormone production183. 
Memory formation is an example of a neuronal process 
that, although being located in the brain, is downstream 
and therefore, by our definition, peripheral to the central 
clock. Similar to what was described for honeybees at the 
beginning of the twentieth century184, flies remember a 
specific odour stimulus learned at a certain time of day, 
and reproduce the correct stimulus–time pair the next 
day. In this form of appetitive learning, a functioning cir­
cadian clock is only needed to encode time-​of-day infor­
mation, not for memory formation per se: clock-​less 
D. melanogaster are still able to learn a specific stimulus, 
but time-​of-day information is lost185. A novel addition 
to the list of processes and organs regulated by the clock 
is the blood–brain barrier. A recent study showed that 
D. melanogaster perineurial glia, which form the out­
ermost layer of the brain, need a functioning clock to 
modulate diurnal oscillations of a xenobiotic transporter, 
which prevents import of toxic substances into the brain 
in a time-​of-day-​dependent manner186.

Peripheral clocks in mammals
The discovery of circadian rhythms in cultured fibro­
blast cell lines some 20 years ago led to the realization 
that, contrary to long-​standing belief, the molecular 
clock of mammals operates not just in the SCN, but 
in virtually all the tissues and cells of the body187,188. 
To date, peripheral clocks have been described in the 
liver, lung, kidney, heart, skeletal muscles, adipose tis­
sue and many other tissues (Fig. 5). A notable exception 
are embryonic stem cells and induced pluripotent stem 
cells, which do not exhibit a functional molecular clock 
cycle although circadian rhythms in glucose utilization  
are still observed189–191. There is ample evidence that 
peripheral clocks in different organs are essential for 
their function. For example, mice manipulated to have 
the circadian clock operate only in the brain show nor­
mal rhythms but not overall levels of locomotor activ­
ity; conversely, normal activity levels and body weight  
are achieved by a having a functioning circadian clock  
only in muscles, despite exhibiting behavioural arrhy­
thmicity192. Other examples of the necessity of peri­
pheral clocks in mammals include the control of glucose 
homeostasis by the liver and pancreatic clocks, ovula­
tion by the ovarian clock, wound healing by the skin 
clock and energy expenditure by the ventromedial 
hypothalamus clock193–197 (Fig. 5). In addition to these 
not entirely unexpected examples, some surprising rela­
tionships have also emerged whose mechanistic basis  
is still unclear, such as control of sleep by BMAL1 in 
skeletal muscle rather than the brain198.

Circadian physiology is generally the result of cyclic 
expression of clock-​controlled genes downstream of the 
core molecular oscillator. Although clocks are ubiqui­
tous throughout the body, the nature, number and phase 
of rhythmically expressed genes is highly tissue-​specific 
in mice, non-​human primates and humans10,78,199,200. 
This limited overlap may be explained at least in part 
by organ-​specific needs of circadian output. For exam­
ple, in the heart, cyclic expression of ion channels and 
metabolic enzymes enables diurnal variations in cardiac 
electrical properties and metabolism, which match daily 
fluctuations in energy demand and nutrient availabil­
ity201–204. In the skin, clock-​controlled expression of cell 
cycle and DNA repair genes mediates rhythmic prolif­
eration and sensitivity to ultraviolet-​induced DNA dam­
age205,206, whereas in the kidneys, circadian oscillations 
in the rate of glomerular filtration and in ion excre­
tion coincide with rhythmic expression of membrane 
transporters207.

Within the largely organ-​specific circadian tran­
scriptome, the core clock genes represent the group 
of genes cyclically expressed in the highest number of 
different tissues and with the most consistent phase 
across all tissues, suggesting the existence of an over­
all shared molecular circadian oscillator in different 
organs, despite their unique profiles of clock output 
genes. This apparent paradox can in fact be explained 
by diverse manners in which molecular clocks and cell-​
type-specific transcription regulators are functionally 
integrated. First, some core clock components have 
well-​defined functions in addition to their role in the 
molecular clock, and these pleiotropic functions can 
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provide direct links to tissue-​specific transcriptional 
programmes. For example, REV-​ERBα can silence gene 
expression not just through direct DNA binding of  
REV-​ERB–ROR response elements, but also indirectly 
through binding to DNA-​tethered cell-​type-specific 
transcription factors such as hepatocyte nuclear factor 6 
in the liver or Krüppel-​like factor 15 in the heart208–210. 
Another prominent example is the interaction of CRY1 
and CRY2 with a wide variety of nuclear receptors, 
including steroid hormone receptors and lipid-​sensing 
peroxisome proliferator-​activated receptors211–213. 
CRY-​mediated repression of these nuclear receptors lim­
its the expression of their target genes in the liver and 
muscle, respectively, and contributes to glucose homeo­
stasis and exercise capacity. Thus, such ‘dual-​use’ factors 
have the capacity to function as keystones in bridg­
ing the core molecular clock cycle with tissue-​specific 
transcription programmes.

Second, CLOCK–BMAL1 activity can be affected 
by other bHLH transcription factors, whose abundance 
and activity vary across tissues. Among them are DEC1 
(also known as bHLHe40) and DEC2 (also known as 

bHLHe41), which themselves oscillate and regulate 
a subset of CLOCK–BMAL1 target genes (reviewed 
in214). The master regulator of cellular oxygen homeo­
stasis hypoxia inducible factor 1α (HIF1α) is another 
bHLH–PAS protein, whose genomic binding sites over­
lap to a large extent with those of BMAL1, and there is 
even evidence for physical dimerization of the two pro­
teins215,216. This contributes to a tight reciprocal relation­
ship between the circadian clock and hypoxia responses, 
which, for example, controls exercise-​induced metabolic 
switches in skeletal muscles217. Of note, CRY1, which is 
the main inhibitor of CLOCK–BMAL1 transcriptional 
activity, has recently emerged as a direct negative regula­
tor also of HIF1α (ref.218). Upstream stimulatory factor 1 
is another bHLH protein whose cistrome intersects with 
that of CLOCK–BMAL1 to the extent that it can sup­
press the circadian rhythm disruptions of the classical 
CLOCKΔ19 mutant219. Synergistic interactions have also 
been observed, for example between CLOCK–BMAL1 
and the master regulator of muscle differentiation, 
myogenic differentiation 1, in the regulation of muscle-​
specific oscillating target genes220. Finally, in cancer cells, 
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expression of the bHLH transcription factor and onco­
protein MYC attenuates circadian cycling through down­
regulation of BMAL1, although the exact mechanism  
remains to be clarified221,222.

Third, cell-​type-specific variations in genome topol­
ogy and chromatin accessibility can contribute to the 
expression of unique sets of clock output genes in dif­
ferent organs. For example, liver-​specific chromatin 
loops mediate the recruitment of clock-​bound distal 
enhancers to relevant promoters200. Although CLOCK–
BMAL1 have been proposed to function as pioneer-​like 
transcription factors, which promote DNA accessibility 
through nucleosome removal, more recent data suggest 
that BMAL1 rather binds to already-​accessible DNA 
sites, thereby conceivably increasing their exposure 
to other transcription factors223–225. Although exactly 
how BMAL1 is recruited to genomic target regions 
remains to be clarified, the very limited overlap between 
the BMAL1 cistromes in different tissues suggests a 
role for cell-​type-specific transcription regulators in 
this process.

The size of the tissue-​specific circadian transcriptome 
can be greatly amplified through an intermediate layer of 
differentially expressed transcription regulators, which 
are directly controlled by the core molecular clock and in 
turn mediate the circadian expression of further down­
stream targets. Examples of this include the PARbZip 
transcription factors DBP, TEF and HLF, which show 
different expression patterns in the SCN as well as many 
peripheral tissues70,226,227. The PARbZip proteins are 
direct transcriptional targets of CLOCK–BMAL1 while 
controlling the rhythmic expression of genes containing 
D-​box elements in their regulatory regions. At least in 
the liver, PARbZip targets include many major detoxi­
fication enzymes, thereby illustrating the importance of 
circadian considerations in drug metabolism228.

Last, it should be noted that despite an overall shared 
molecular clock identity throughout the body, some 
tissue-​specific adaptations to the canonical molecu­
lar clock do exist. For example, alternative forms of 
CLOCK–BMAL1 inhibition — through hepatocyte 
nuclear factor 4A and PASD1 — have been described 
in liver and intestinal cells and in germline tissue, 
respectively79,229.

Entrainment of circadian clocks
Central and peripheral clocks are aligned with the phase 
of external zeitgebers through entrainment. Zeitgebers 
include light, temperature, food, exercise and mechano­
sensory stimulation, and entrain circadian rhythms by 
acting either on the central pacemaker or directly in 
peripheral tissues.

Clock entrainment in D. melanogaster
Overall, entrainment of peripheral oscillators in insects 
is less dependent on a master pacemaker compared 
with mammals, by virtue of their direct responsiveness 
to external zeitgebers such as light and temperature230. 
The sensitivity of the circadian clock to a zeitgeber varies 
with the phase during which it is applied, as described in 
so-​called phase-​response curves. When different groups 
of flies are exposed to 15-min light pulses at different 

zeitgeber times, a phase shift in the circadian locomotion 
with respect to the original phase is observed at times of 
increased sensitivity, such as after dusk and before dawn, 
but not during ‘dead zones’, when light has no effect on 
the circadian phase231,232. In general, a light pulse at the 
beginning of the night results in a phase delay due to 
the transient degradation of cytoplasmic TIM, whereas a 
light pulse in the early morning leads to phase advances 
owing to nuclear TIM degradation. A light pulse dur­
ing the day has no impact on phase resetting, as during 
this ‘dead zone’ TIM levels are too low to be affected by  
light-​induced degradation.

The D. melanogaster photoreceptor CRY, which is a 
flavoprotein similar to DNA photolyases233, is expressed 
in most clock-​containing tissues. Upon excitation with 
light at a wavelength of 450 nm (the most potent zeit­
geber in D. melanogaster160,234 and in mammals235),  
CRY binds to TIM18, leading to recruitment of the 
E3 ubiquitin ligase Jetlag19 and rapid degradation of 
both CRY and TIM19,236 (Fig. 1), thereby resetting the 
clock231,237,238. However, in the absence of CRY, light reset­
ting can still occur through the fly visual system, spe­
cifically through the rhodopsin 1–7 photoreceptors239. 
Rhodopsin 7 has a higher excitation maximum than the 
other rhodopsins and CRY, thereby facilitating entrain­
ment of the circadian clock to longer wavelengths in  
D. melanogaster240.

In addition to light, temperature cycles can also 
entrain the fly circadian clock (reviewed in142), with 
differences as small as 2 °C being sufficient for robust 
entrainment. Ionotropic receptors in the chordotonal organ 
sense temperature, which is transmitted to the large ven­
tral lateral neurons clock in the brain for entrainment 
of temperature cycles241. Other zeitgebers include vibra­
tion cycles, which are sensed through proprioreceptive 
organs and can affect circadian locomotor rhythms242, 
and feeding rhythms, which entrain circadian rhyth­
micity of insulin-​producing cells to match food availa­
bility243. The fat body clock is also entrained by feeding 
and, as in mammals, the provision of food at odd times 
phase-​shifts the fat body, but not the brain clock, result­
ing in the two tissues being in a state of jetlag relative to 
each other. If food availability is in sync with the normal 
activity patterns of flies, limiting food access to certain 
daytime hours improves heart function during ageing, 
sleep duration244 and reproduction33, resulting in a pos­
itive effect on health. Notably, the extended lifespan 
attributed to caloric restriction245 functions through 
clock-​independent processes246.

In D. melanogaster, the ubiquitous bacterial endo­
symbiont Wolbachia has recently been shown to affect 
locomotor rhythms, raising the question of whether the 
microbiome can act as a zeitgeber247. The existence of 
different zeitgebers shows that the clock uses multiple 
routes of entrainment, which are integrated in the brain. 
If animals are presented with multiple zeitgebers such 
as light and temperature, which are out of phase with 
each other, light usually dominates due to the presence 
of CRY in clock neurons248 — but such conflicts can 
reduce the amplitude of the molecular clock and change 
behaviour rhythms249, thereby illustrating that aligning 
different cues is optimal for clock robustness.

Ionotropic receptors
Ligand-​gated ion channels, 
which form pores for specific 
ions in the plasma membrane 
upon binding of a specific 
extracellular ligand.

Chordotonal organ
A sensory organ found along 
the body wall of insects and 
crustaceans, which operates as 
an auditory organ, a position 
and movement sensor or a 
sensor of wind, gravity or 
temperature.
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Clock entrainment in mammals
Although light also acts as the primary zeitgeber in mam­
mals, including in mice and humans, they can only per­
ceive it through the eye. Thus, unlike in D. melanogaster, 
the core molecular oscillator present in tissues and 
cells throughout the body is not directly regulated by 
light. In fact, the mammalian homologues of the main 
fly circadian photoreceptor, CRY1 and CRY2, have 
lost photosensitivity and adopted a novel function as 
transcriptional repressors250. Consistent with a light-​
independent role, this transcription repression function 
does not require residues that mediate light responses 
in D. melanogaster251. Instead, in mammals, the central 
pacemaker receives photic time-​of-day information 
from intrinsically photosensitive retinal ganglion cells 
expressing the photopigment melanopsin (reviewed 
in252). Through the retinohypothalamic tract, intrinsically 
photosensitive retinal ganglion cells couple directly to the 
SCN, which subsequently conveys phase information to 
peripheral oscillators elsewhere in the body (Fig. 5).

Peripheral clocks are responsive to phase-​adjustment 
signals from the SCN, which are essential for main­
taining optimal phase relationships between the cen­
tral and different peripheral oscillators188. Direct SCN 
output pathways include efferent projections to other, 
mostly hypothalamic, brain regions and humoral 
signals, including oscillations in glucocorticoid and 
melatonin151. Circadian rhythms in core body temper­
ature offer another way to modulate peripheral oscilla­
tions. Whereas the SCN itself is resistant to temperature 
changes, peripheral clocks can be reset by physiological 
temperature cycles or short-​term heat pulses253–256. This 
process depends on the transcription factor heat-​shock 
factor 1 (HSF1), whose activity oscillates in a circadian 
manner257. Temperature cycles also mediate the rhyth­
mic expression of cold-​inducible RNA-​binding protein 
(CIRP), which increases the amplitude of circadian 
gene expression258. Circadian rhythms in blood and tis­
sue oxygenation have also been described and cycles in 
oxygen and carbon dioxide concentrations in the phys­
iological range can reset the circadian clock of cultured 
cells259,260. For this form of entrainment, the interactions 
discussed above between molecular clock components 
and HIF1α-​mediated hypoxia signalling provide a fitting 
mechanistic explanation. The existence of a systemic 
blood-​borne factor that can entrain at least a subset of 
peripheral oscillators has been deduced from parabiosis 
experiments between SCN-​lesioned mice and normal 
mice261. Although the exact nature of this signal remains 
elusive, an oscillating activity was found in serum that 
induces rhythmic changes in actin dynamics and in the 
activity of the transcription factor serum response factor 
(SRF), whose target genes include PER2 (ref.262).

The SCN can also affect peripheral clock synchroni­
zation indirectly, by modulating behavioural rhythms in 
rest–activity and food intake. This has been most prom­
inently demonstrated in the liver, where cycling of only 
a small fraction of the circadian transcriptome can be 
sustained by systemic signals in vivo in the absence of 
the local oscillator263. Yet circadian cycling in the liver is 
highly sensitive to the timing of food intake, to the extent 
that it can in large part be maintained by time-​restricted 

feeding even in the absence of a functional clock264–268. 
Indeed, it has long been known that a food-​entrainable 
oscillator can reset the phase of peripheral clocks, albeit 
not of the SCN264,269. One of the food-​induced syn­
chronization signals has been suggested to be insulin, 
which can mimic feeding-​induced clock resetting and 
shift the phase of select peripheral oscillators, but not 
of the SCN270–272. More generally, the activity of several 
clock-​modifying enzymes, including AMPK, SIRT1 and 
PARP1, depends on metabolic states, thereby conceiva­
bly enabling clock resetting through food intake99,101,273. 
Analogous to the relationship between food and the liver 
clock, timed exercise can reset the circadian clock in 
skeletal muscles274. Although the mechanism underlying 
this phenomenon remains to be clarified, it is conceivable 
that exercise-​induced transient hypoxic stress and induc­
tion of HIF1α could modulate clock cycling as described 
above. Organ-​specific microenvironments can also have 
different effects on the respective peripheral oscillators. 
For example, the mammary circadian clock is sensitive to 
mechano-​chemical stiffness of the extracellular matrix, 
but shows opposite responses in different cell types: 
whereas a stiff microenvironment dampens circadian 
oscillations in epithelial cells, it strengthens them in fibro­
blasts, and vice versa275,276. The net result of the functions 
of all these mechanisms in normal physiological condi­
tions is an optimal internal phase relationship between 
the central and various peripheral clocks in the body. 
This is crucial for sustaining the many cyclic variations 
in neurological, metabolic, endocrine and cardiovascular 
function that are essential to human health.

Circadian dysfunction diseases
The molecular circadian clock operates in most cells of 
the body and exerts temporal control over the physiologi­
cal activity of different tissues and organs, thus leading to 
cyclic variations in gene expression and tissue function. 
Whereas normal circadian regulation of these processes 
promotes physiological homeostasis, circadian dysfunc­
tion can in turn adversely affect them and lead to vari­
ous neurological, metabolic, endocrine, cardiovascular  
and immune function comorbidities.

Diseases and ageing in D. melanogaster
Altered circadian rhythms in flies have been linked to 
various pathologies, including immune and neurodegen­
erative dysfunction and ageing-​related diseases. Survival 
of bacterial infection depends on the precise timing of 
infection: night-​time exposure generally improves sur­
vival277. Clock mutations alter the ability of flies to fight 
certain infections, which is related to the impaired gen­
eration of antimicrobial peptides and the ability to stage 
a phagocytic response277–279. D. melanogaster sleep more 
after infection in a time-​of-day-​dependent manner,  
which is required for recovery. Mutants of the anti­
microbial peptide-​encoding gene nemuri are deficient  
in the acute increase in sleep that follows infection, which 
is linked to reduced survival280. Flies serve as models 
for various neuropsychiatric pathologies, which have 
been linked to disturbances of the circadian clock, and 
vice versa. The fly orthologue of Ataxin 2, mutations in 
which cause spinocerebellar ataxia type 2 in humans, is 

Parabiosis
The surgical joining of two 
organisms to form one shared 
physiological system.
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required for per expression in clock neurons, thereby 
linking Ataxia with the function of the molecular 
clock49,50. In a fly model of Huntington disease, over­
expression of mutant Huntingtin causes arrhythmia  
in a heat shock protein-​dependent manner281, whereas 
lowered expression of the DBT regulator Spaghetti is 
linked to shortened lifespan and age-​related locomotor 
deficits in a fly model of Alzheimer disease282.

During ageing, sleep is fragmented and the ampli­
tude of locomotor rhythms is reduced along with 
period changes despite the persistence of molecular 
oscillations283 (Fig. 4), which is believed to be due to pro­
gressive desynchronization of different groups of pace­
maker neurons284. Adding the zeitgeber temperature, 
reducing PKA signalling284 and CRY overexpression285 
can improve rhythms in aged flies. A newly discovered 
class of genes, many of which have a role in the oxidative 
stress response, exhibits de novo cycling during ageing286. 
Oxidative stress is also a shared feature of neurodegener­
ative disorders, which incidentally have a strong associ­
ation with circadian dysfunction287. Interestingly, period 
null flies have lowered resilience to oxidative stress and 
heightened neuronal degeneration288, and, in a sensitized 
background, reduced longevity289. In mice, inactivation 
of BMAL1 also reduces the lifespan, which can be par­
tially reversed by lifelong treatment with antioxidants290. 

Antioxidant enzymes show diurnal oscillations291,292, 
suggesting that time-​of-day removal of toxic free radicals 
might link the clock to ageing.

Diseases in mammals
In humans, misalignment between endogenous circa­
dian rhythms and environmentally imposed rest–activity 
cycles is associated with a wide variety of diseases, most 
prominently metabolic, cardiovascular and mental dis­
orders and cancer. The adverse effects of mismatched 
internal and external cycles on human health align with 
observations in hamsters, flies and cyanobacteria, which 
indicate that an organism’s optimal fitness requires res­
onance between the endogenous circadian rhythm and 
environmental cycles1–5 (Box 1). Although this evolu­
tionary conservation underscores the immutability of 
the underlying biological principles, contemporary life­
styles in modern societies routinely infringe on this rule. 
This phenomenon is referred to as social jetlag and is 
associated with many of the same metabolic, cardiovas­
cular and psychiatric risks that have been found in shift 
workers293–296. Social jetlag is especially pronounced in 
late chronotypes, which is consistent with their higher 
susceptibility to many of the above-​mentioned com­
mon circadian comorbidities297–299. The widespread use 
of light-​emitting electronic devices, which have become 
nearly ubiquitous, appears to further exacerbate this 
trend295,300,301. Thus, health hazards associated with cir­
cadian dysfunction, which were originally discovered in 
shift workers, may indeed pose a risk for a much larger 
segment of the population. The epidemiological and 
experimental evidence for major circadian comorbidi­
ties, including metabolic, cardiovascular and mental dis­
orders and cancer, as well as their potential clock-​related 
aetiology are discussed in Supplementary Box 1.

The clock as a pharmacological target
The nuclear receptors REV-​ERBα and REV-​ERBβ are 
not only key components of the molecular circadian 
clock but also function as major regulators of metabo­
lism and mood210,302,303. REV-​ERB agonists show remark­
able efficacy in mice in maintaining wakefulness304–306, 
reducing anxiety305, alleviating adverse metabolic effects 
of diet-​induced obesity306, inducing selective cancer cell 
death307 and reducing neuroinflammation308. REV-​ERB 
antagonists309, on the other hand, promote mania-​like 
behaviour in mice when applied to the ventral mid­
brain303 and show cardioprotective potential for aor­
tic valve replacement surgery performed at high-​risk 
times of day310. Pharmacological activation of RORα 
and RORγ, molecular antagonists of REV-​ERBα and 
REV-​ERBβ in the molecular clock, strengthens circa­
dian oscillations311,312 and shows therapeutic potential 
in mouse models of Alzheimer disease and Parkinson 
disease, depression and obesity311,313–315. Stabilizers of the 
CRY proteins lengthen the circadian period and improve 
glucose tolerance110,316, whereas inhibitors of their tran­
scriptional repressive activity slow the growth of a breast 
cancer cell line317. Although it remains to be seen which 
of these therapeutic effects will be preserved in human 
trials, clearly there is great potential for small molecules 
targeting molecular clock factors for treating circadian 

Box 1 | The evolutionary benefits of maintaining circadian clocks

Circadian clocks are thought to confer an adaptive advantage based on three 
independent lines of evidence. First, circadian clocks are ubiquitous in nature and have 
likely evolved independently multiple times, because the core clock genes in animals, 
plants and fungi are not clearly related and an even lower level of conservation is seen 
between bacteria and eukaryotes325. second, misalignment of internal periodicity with  
the environmental rhythm is deleterious to fitness and, in fact, having a mismatched  
clock is worse than having none at all. Growing bacteria3, plants326, insects4,327,328 and 
mammals1,329,330 with different intrinsic period lengths in non-​matching light–dark cycles 
reduces their lifespan, whereas resonance of internal and environmental periods 
promotes longevity. Last, in environmental conditions that favour specific variations  
of the circadian rhythm, both in nature or in experimental settings, these rhythms  
are selected for and the resulting circadian clocks are altered to fit the respective 
external settings331–334.

in principle, an intrinsic circadian clock could confer an adaptive advantage in two 
different ways. in what is referred to as the ‘extrinsic advantage’, having an internal 
clock would allow an organism to anticipate daily-​recurring environmental changes in 
light, temperature, availability of food or mating partners and presence of predators.  
in support of this model, colonization of Drosophila melanogaster at different latitudes 
is accompanied by modifications of the circadian clock as an adaptation to different 
day lengths334–336 and, in chipmunks and squirrels with lesions in the suprachiasmatic 
nuclei (where the master circadian pacemaker is located), increased mortality has been 
attributed to increased susceptibility to predator attacks337. By contrast, an ‘intrinsic 
advantage’ could arise from optimal temporal coordination of different physiologic 
processes. indeed, the persistence of circadian rhythms in populations of D. melanogaster 
bred under constant environmental conditions for more than 50 years338 as well as  
in some cave-​dwelling339 and polar340 animals can be interpreted as evidence for  
an intrinsic adaptive value of the circadian clock, even in the absence of diurnal 
environmental changes. in primordial cells, circadian clocks could have provided  
many benefits, including minimizing DNa photo-​damage by limiting DNa replication  
to night-​time341,342 and energy conservation by temporally separating conflicting 
metabolic pathways343,344 and by transiently downregulating costly cellular processes 
such as gene expression345. although lack of a circadian clock does not limit the lifespan 
in D. melanogaster in laboratory conditions, circadian arrhythmicity is associated with 
reduced fecundity346. taken together, the available data suggest that circadian clocks 
have evolved to aid organisms to efficiently organize their temporal relationship with 
the environment and their internal physiological processes.

Chronotype
The intrinsic preference of an 
individual with regards to the 
timing of rest and activity 
during a 24-h period, including 
early (also referred to as 
morningness), intermediate  
or late (also referred to as 
eveningness).
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disorders and their associated comorbidities. One drug 
that clearly alters the circadian cycle and has already 
been clinically used for decades is the mood stabilizer 
lithium, which lengthens the circadian period318–320. 
Although lithium is known to inhibit the clock modifier 
GSK3, other means of decreasing GSK3 activity have in 
fact the opposite effect on the circadian period319,321,322. 
Thus, additional studies will be required to character­
ize the molecular mechanisms through which lithium 
modulates the circadian clock.

Conclusions and future perspective
Understanding how circadian clock genes work together 
has provided a direct view of the relationship between 
genes and specific behaviours, in particular the sleep–
wake cycle. Next, the intercellular circuitry and external 
input signals that affect circadian clocks are being elu­
cidated. Together these advances are showing us how 
circadian clocks connect different environmental and 

internal stimuli, and inform an organism, including its 
different organs, tissues and cells, about the time of day. 
Finally, we have arrived at a time where the profound 
effects of circadian clocks on our body have fully pen­
etrated into mammalian and human research, showing 
that circadian disruption can have considerable effects 
on human health. Many in our field advocate a rewriting 
of medical practice, to include the advances in circadian 
biology into the treatment of patients. Chronotherapy, 
light therapy and circadian intervention, among others, 
are all part of a new circadian medicine323,324, which will 
hopefully become a safe and low-​cost standard inter­
vention for many pathologies. The accelerating progress 
in these research areas over the past 50 years provides a 
stunning example of how fundamental research can gen­
erate new insights into biology and suggest important 
new applications for improving human health.
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